GENERAL INFORMATION

Venue
Kellogg Hotel & Conference Center
Michigan State University
219 S Harrison Rd
East Lansing, MI 48824
United States

Conference Homepage
www.antibiotic-resistance.de

Conference Chairs
James M. Tiedje
Director, Center for Microbial Ecology
University Distinguished Professor of Plant, Soil and Microbial Sciences, and of Microbiology and Molecular Genetics
Michigan State University

Shannon Manning
University Foundation Professor of Microbiology and Molecular Genetics
Michigan State University

International Scientific Committee
• Kimberly L. Cook (US) • Jason R. Snape (GB)
• Chase Crawford (US) • James M. Tiedje (US)
• Joakim Larsson (SE) • Ed Topp (CA)
• Shannon Manning (US) • Elizabeth Wellington (GB)
• Jean E. McLain (US) • Tong Zhang (CN)
• Amy Pruden (US) • Yong-Guan Zhu (CN)
• Kornelia Smalla (DE)

Professional Congress Organizer
Conventus Congressmanagement & Marketing GmbH
Claudia Tonn/Agnes Krummrich (Germany)
Phone: +49 3641 31 16-353 • edar@conventus.de

Confirmed Invited Speakers (continuously updated)
• Lisa Durso (Lincoln, NE/US)
• Michael Gillings (Sydney/AU)
• Rai Kookara (Glen Osmond/AU)
• Joakim Larsson (Göteborg/SE)
• Ramanan Laxminarayan (Washington D.C., WA/US)
• Célia Manaia (Porto/PT)
• Amy Pruden (Blacksburg, VA/US)
• Andrew Singer (Wallington/GB)
• Kornelia Smalla (Braunschweig/DE)
• Jason Snape (Cheshire/GB)
• Ed Topp (London/CA)
• Marko Virta (Helsinki/FI)
• Tong Zhang (Hong Kong/CH)

PRELIMINARY PROGRAM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1: Natural resistome, selection & evolution</td>
<td>Session 4: AMR/ARG sources, mitigation: terrestrial agriculture</td>
<td>Session 7: Assessment, mitigation, stewardship; human impact</td>
<td>Session 10: National program or sector outcomes, policy, initiatives</td>
<td></td>
</tr>
<tr>
<td>Session 2: ARG genetic linkages, gene/plasmid mobility, HGT</td>
<td>Session 5: ARG/ARG sources, mitigation: water environments</td>
<td>Session 8: Risk scenarios, assessment, modeling</td>
<td>Closing lecture</td>
<td></td>
</tr>
<tr>
<td>Coffee Break</td>
<td>Lunch Break</td>
<td>Coffee Break</td>
<td>Farewell and Announcements</td>
<td></td>
</tr>
<tr>
<td>Session 2: continued</td>
<td>Session 6: AMR/ARG sources, mitigation: aquaculture, production, hospitals, other</td>
<td>Session 9: Consumer trends, public communication, engagement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session 3: Environmental antibiotic chemistry, bioavailability, metabolism</td>
<td>Parallel Roundtables 1-3: Asseessment of advances, gaps & path forward for basic knowledge, agricultural sector & water domain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coffee Break</td>
<td>Poster Session I</td>
<td>Poster Session II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dear Colleagues,

The threat of antibiotic resistant pathogens has long been recognized, at least by scientists, but only recently has the threat of multidrug resistant strains become broadly recognized to motivate action by leaders in governments as well as by the public. Necessary action includes research to define the scope of the problem including its various sources, the impacts of current practices in the different use sectors, assessment of the global nature of the problem, and identifying mitigation and stewardship practices.

EDAR-1, held in Canada in 2012, was a stimulating international effort to address the environmental aspect of this problem, which continued with EDAR-2 in China in 2013 and with EDAR-3 in Germany in 2015. These meetings have grown in size and interest as they enabled the international exchange of research findings. Addressing the environmental aspect of antimicrobial resistance, as a complement to efforts in the medical arena, helps ensure that all critical aspects of the problem are addressed and treated holistically.

Many of the expanded global research programs will be reaching the first stage of maturity in 2017 making the EDAR-4 meeting very timely for sharing research outcomes as well as identifying the next stage needs to protect public health. To meet these goals, the program is divided into three sections with day 1 focused on the advances in the fundamental aspects of AMR; day 2, on the advances in characterizing sources and mitigation in different use sectors, day 3 on human impact, risk assessment, and consumer trends, and day 4 to close the meeting with national programs and policy directions.

We hope that you will join EDAR-4 to discuss the most recent research progress and their implications for human health and look forward to welcoming you to Michigan State University August 13-17, 2017.

James M. Tiedje
Conference Chair

Shannon Manning
Conference Co-Chair

CALL FOR ABSTRACTS

Abstract Submission
We cordially invite you to submit your abstracts (length max. 2,000 characters) online at www.antibiotic-resistance.de to the following topics.

Abstracts must be submitted in English by 14 April 2017.

An international review panel will evaluate all abstracts according to scientific content and suitability for EDAR. A limited number will be accepted for oral or poster presentations.

Note: The topic descriptions are meant to help assigning your abstract to the adequate session.

BASIC SCIENCE UNDERPINNING AMR
1. Natural resistome, selection and evolution
 - Natural reservoirs of ARGs, MGEs in ocean, soil, any native biota
 - Selection, co-selection, low concentrations
 - Evolutionary change, adaptations
 - Bioinformatic or experimental studies aimed at new ARG discovery

2. ARG genetic linkages, gene/plasmid mobility, HGT
 - Plasmid ecology
 - Gene mobility
 - Metagenomic assembly, long reads
 - Bioinformatics tools, databases, ARG nomenclature
 - Single cell analyses

3. Environmental antibiotic chemistry, bioavailability, metabolism
 - Environmental conditions for selection
 - Fate and transport of antibiotics
 - Antibiotic residues in different environments and resource settings

ADVANCES IN CHARACTERIZING ENVIRONMENTAL SOURCES, CONSEQUENCES, STEWARDSHIP AND/OR MITIGATION
4. AMR/ARG sources, mitigation: terrestrial and agriculture
 - Animal agriculture, and at different scales and resource settings
 - Wildlife, pets
 - Manure management, treatment, AMR ecology in manures
 - Horticultural uses
 - ARG cycling via animal worker